

LIPOchip

Rapid Diagnosis of Familial Hypercholesterolemia in British Patients

Marianne Stef, PhD

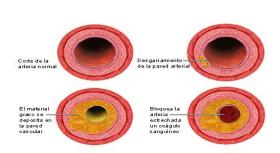
FAMILIAL HYPERCHOLESTEROLEMIA

Symptoms / Phenotype:

- High level of circulating cholesterol
- Xanthomas and cholesterol deposits
- Most frequent genetic cause of premature cardiovascular disease

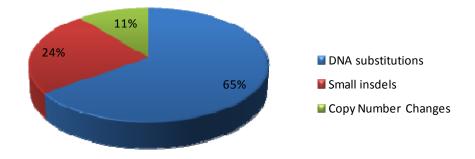
Autosomal dominant disease

◆Frequency of 1 in 500:


- Estimated 10 million affected worldwide (WHO) and 120,000 in the UK
- Under diagnosed and only 25% effectively treated (statins)

Suitable Diagnosis?

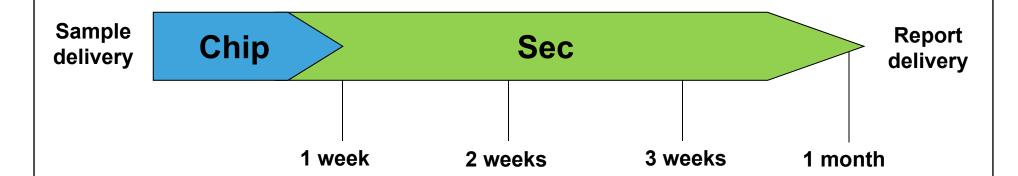
- Clinical diagnosis: Mild phenotypes at young age go unnoticed and differential diagnosis from other disorders is difficult
- Genetic diagnosis: provides unequivocal diagnosis


PROGENIKA

HF MUTATIONS

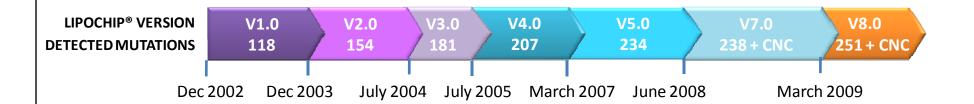
- Mutations in few genes (LDLR, APOB, PCSK9...)
- **●** > 1000 mutations described: heterogeneity
- Most of the mutations are in the LDLR gene

(Leigh et al., 2008)

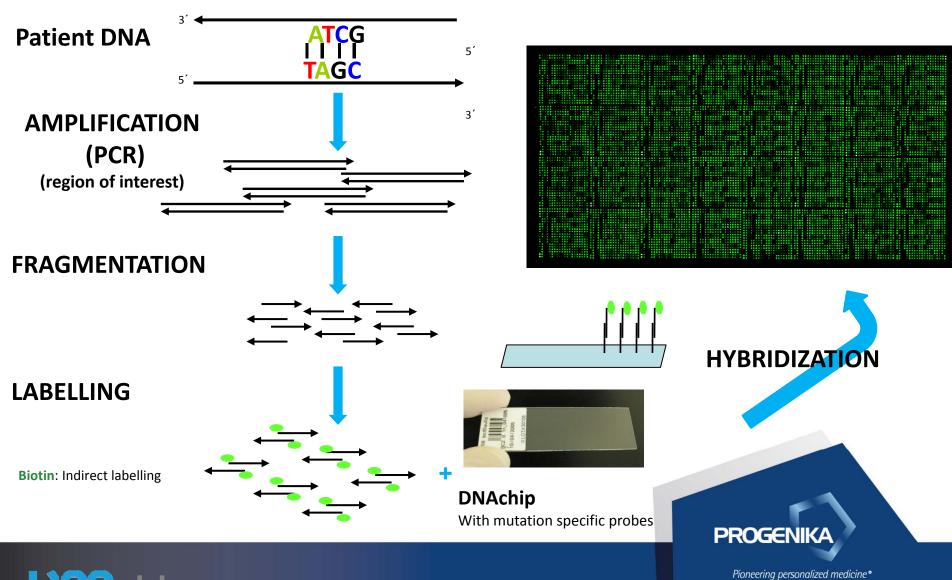

GENETIC DIAGNOSIS

- Point mutations
 - •LDLR gene : 18 exons
 - •APOB gene : 2/26 exons (Ligand binding domain)
 - PCSK9 gene: 12 exons (gain of function)
 - → Sequencing or screening + sequencing
- Copy Number Changes
 - → MLPA, RFLP...
- → Expensive, long and tedious analysis

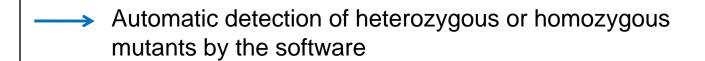
L1PO chip SERVICE PLATFORM WORKFLOW


- ◆ Chip: LIPO chip
 - Specific point mutations' detection
 - CNVs detection
- Sequencing in negative samples
 - Prom + 18 exons LDLR gene
 - APOB exons 26

L1POchip HISTORY

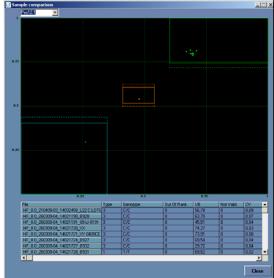

- First designed to detect the most frequent mutations in Spain
- First chip with CE mark for IVD
- Implementation of Copy Number Changes detection in v7.0
- Implementation of detection of European mutations in v8.0

MOLECULAR BASIS OF HYBRIDIZATION


LIPO chip

GENOTYPES COMPUTING

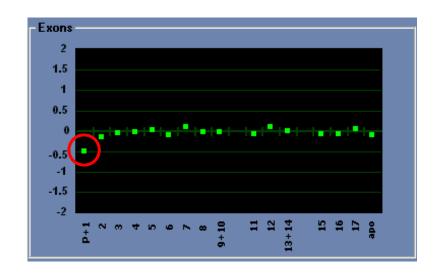
Based on intensity values of normal and mutated probes:

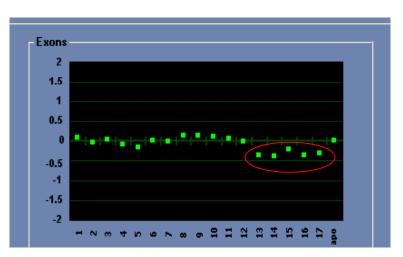

- 2 sets of probes specific of the mutated and normal allele
- Normal and mutated ranges computed with at least 100 normal samples and 7 mutated samples

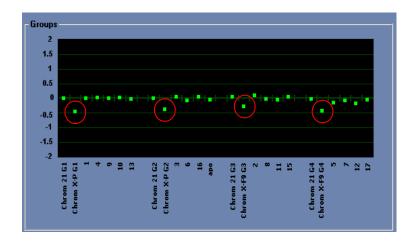
	Normal	HTZ Mutated	HMZ Mutated
	Sample	Sample	Sample
Inormal oligo (In)	1000	500	≈0
Imutated oligo (Im)	≈0	500	1000
Ratio In In	1	0.5	0

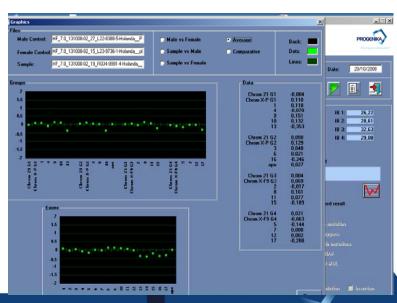
- capacity of genotyping
- samples identification

DETECTION OF COPY NUMBER CHANGES


- Specific controls included in the chip and in each PCR group:
 - Normalization : Chromosome 21
 - Copy number change detection : Chromosome X
- In each batch of hybridization, male and female controls are processed
- Based on ratio of intensities of hybridization


	Chr 21	Chr X	Normal	Deleted
	CIII ZI	CIII X	exon	exon
Isample (male)	1000	500	1000	500
Icontrol (female)	1000	1000	1000	1000
Ratio	1	0.5	1	0.5





DETECTION OF COPY NUMBER CHANGES

MUTATIONAL PATHOGENICITY ASSESSMENT

- Bioinformatical analysis
 - > Amino-acid conservation
 - Nucleotide conservation
 - > Physico-chemical distance between AA
 - Confirmation with 3 softwares (Polyphen/SIFT/Align GVGD)
 - > Splicing prediction (3 softwares)
- Familial studies
 - > Co segregation mutation and FH
- Protein modeling (in collaboration with Zaragoza Laboratory)
 - ➤ Modeling of AA change in binding domain
- Promotor mutations (in collaboration with Zaragoza Laboratory)
 - ➤ Electrophoretic mobility shift assay
- Patients' receptor activity
 - ➤ Real-time PCR, Western blot and LDLR activity assay in cultured lymphocytes
- Daily update of specific literature

LIPOchip * REPORTS

Date	00-00-00
Sample Code	000000
Doctor	

Hospital Unit/Department Address

Result of the Familial Hypercholesterolemia genetic analysis 1,2 MUTATIONAL PATHOGENICITY PENDING VALIDATION STUDIES

Mutation reference: M129

In the sample labelled with the code indicated above, a mutation was identified with the following characteristics:

Gene: LDL Receptor

Mutation Reference No: M129

Genetic identifier: c.1186+5G>A Mutation Class: Splicing Classification of the Mutation: Class B

Class B Mutations

Since no validation of the pathogenicity of class B mutations has been performed, it is necessary to establish the association of the genotype with the phenotype of the illness. For example, a familial genetic analysis is recommended to determine whether the mutation is present in members of the family with high level of cholestero

Pathogenicity clues:

Highly conserved nucleotide among species (8/9)

Splicing prediction³

SpliceSiteFinder score (normal/mutated): 76.77/64.62 [0-100] MaxEntScan score (normal/mutated): 7.23/0 [0-12] GeneSplicer score (normal/mutated): 8.64/4.08 [0-15]

Mutational pathogenicity pending validation studies

REFERENCES

¹The analysis has been performed as described in the technical specifications, which are available upon request <u>Services properties com</u>
"Tejedor et al., Clinica Dremissry 51(7):1137-144 (2005); Alonso et al., Clinica biochemistry 42:899-903 (2009)
Steo et al., J. Comput Biol 11:377-364 (2004); Snapiro et al., Mucleic Acids Res 15:7155-7174 (1967); Pertea et al., Mucleic Acids Res 23:1165-1190 (2001)

Signed: Head of the Genetic Diagnosis Laboratory services@progenika.com

Signed Dr. Diego Tejedor

Pathogenecity clues

LIPOchip * REPORTS

Date	00-00-00
Sample Code	000000
Doctor	

Hospital Unit/Department Address

Result of the Familial Hypercholesterolemia genetic analysis 1,2 **POSITIVE**

Mutation reference: M006

In the sample labelled with the code indicated above, a mutation was identified with the following characteristics:

Gene: LDL Receptor

Mutation Reference No: M006

Genetic identifier: c.1054 1060+4delTGCGAAGGTGA Protein identifier: p.Cys331llefsX16 (HGVS nomenclature p.Cys352llefsX16) Classification of the Mutation: Class A

Class A Mutations

These mutations are directly associated with Familial Hypercholesterolemia, since their pathogenicity has been validated

Validation study: Neu-Yilik et al., Adv Genet 62:185 (2008)

Null Allele Mutations

The mutations that result in a null allele are usually associated with more severe, phenotypes, including advanced atherosclerosis, as indicated in the literature³. Null mutations have been associated with a high risk of cardiovascular disease, high levels of cholesterol, and the need for intensive treatment to achieve a therapeutic response (a decrease in LDLcholesterol levels). A close follow-up of the patients that carry this type of mutation is

COMMENTS

'The analysis has been performed as described in the technical specifications, which are available upon request <u>services@progenika.com</u>
*Teledor et al., Clinical Chemistry 51(7):1137-144 (2005); Alonso et al., Clinical Biochemistry 42:899-903 (2009) **Junyeri et al., Arterioscier Thromb V 9sc Biol 28(3):880-885 (2008); Alonso et al., Atheroscierosis 200(2):315-21 (2008); Tejedor et al., Clinical Chemistry 51(7):1137-144 (2005)

Signed: Head of the Genetic Diagnosis Laboratory Progenika Biopharma

Signed Dr. Diego Tejedor

Highlighting the pathogenicity of Null Allele / Receptor negative mutations

VALIDATION STUDIES

	Total of point mutations	Total of CNVs	Total of negative samples	% of match
Spanish validation	67	6	65	100
Italian validation	36	3	58	100
Dutch validation	65	28	11	99.03

One discrepancy during Dutch validation:

Duplication of exon 9, which can't be detected by the chip because of exons 9 and 10 are amplified together (as well as promoter + exon1 and exon13 +14)

Spanish services:

Versions v7, v8 and v9 used by Spanish services since July 2008: **2663 samples**

77 CNC detected (21 random MLPA verification)

1072 samples with point mutations detected by the chip (150 random fully sequenced)

1369 negative samples (all sequenced, 100 random MLPA verification)

Mutation composition of **UPO**chip

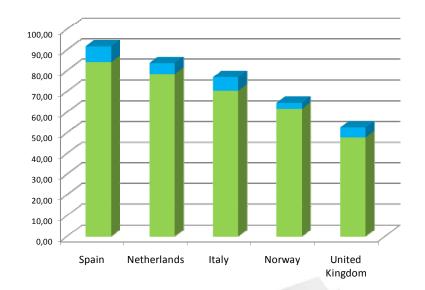
Gene	Mutation Number
LDLR	242
APOB	3
PCSK9	6
Total	251

- ◆ All types of mutations can ◆ Mutations' be detected:
 - Small insdel
 - DNA substitutions
 - CNC

pathogenicity verified by literature validation studies

D151N	c.514G>A	p.Asp151Asn	ES NL NO
C371X	c.1176C>A	p.Cys371X	ES NL NO
W556R	c.1729T>C	p.Trp556Arg	ES NL NO
R723Q	c.2231G>A	p.Arg723Gln	ES NL NO
T740M	c.2282C>T	p.Thr740Met	ES NL NO
2393del9bp	3_2401delTCCTC	p.Lys778_phe780del	ES NL NO
1359-1G>A	c.1359-1G>A	N/A	ES NL NO
S156L	c.530C>T	p.Ser156Leu	ES NL NO UK
C152X	c.519C>A	p.Cys152X	ES NL UK
P587L	c.1823C>T	p.Pro587Leu	ES NL UK
D200G	c.662A>G	p.Asp200Glv	ES NLUK IT NO

Mutation composition of LIPOchip

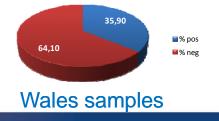

Gene	Mutation Number
LDLR	242
APOB	3
PCSK9	6
Total	251

- ◆ All types of mutations can be detected:

 Mutations'
 pathogenicity
 - Small insdel
 - DNA substitutions
 - CNC

Mutations' pathogenicity verified by literature or validation studies

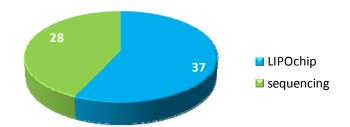
	Point mutations %	CNC %	Total %
Spain	83.90	7.65	91.55
Netherlands	78.24	5.17	83.41
Italy	70.24	6.48	76.72
Norway	61.53	2.82	64.35
United Kingdom	47.62	4.77	52.39

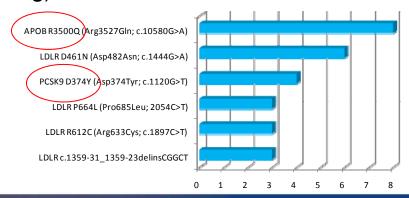


PROGENIKA

BRITISH STUDIES

- - ➤ 6 samples' DNA quality not meeting requirements, CNVs not analyzable
 - > 120 samples analyzed with v8.0
- - ➤ 1 sample still in process (negative in chip, being sequenced)
 - > 39 samples analyzed with v8.0 or v9.0

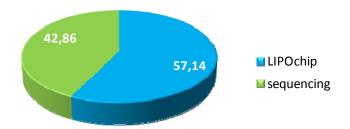




BRITISH STUDIES Among positives samples

- Newcastle samples :
 - 65 positive samples:
 - 52 LDLR mutations
 - 8 APOB mutations
 - 4 PCSK9 mutations
 - 1 LDLR CNV

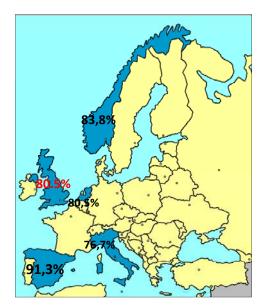
➤ All results consistent with previous studies (Tepnel kit + MLPA + sequencing)



BRITISH STUDIES Among positives samples

- Wales samples :
 - 14 positive samples:
 - 12 LDLR mutations
 - 1 PCSK9 mutation
 - 1 LDLR CNV
 - All mutations different

LIPO chip EVOLUTION


- ◆ LIPOchip v9: Based on frequencies provided by European specialists

LIPOchip EVOLUTION

PROGENIKA

CONCLUSION

- Capacity for one tool to detect point mutations and CNC
- Reproducibility, sensitivity and specificity > 99.5%
- Results in less than one week with the chip
- LIPOchip UK expected pick up rate around 80%
 - > confirming negatives by sequencing may only be required in special cases
- Can be applied to any kind of illness linked to both point mutations and CNVs

